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- If the complete structure is recognized, but of poor 
quality, a conventional Fourier synthesis may be used 
to obtain refined parameters. 
- If only a fragment is recognized (say less than 60% 
of the total scattering power), this fragment may be 
used as input to DIRDIF. 
- If the structure is not recognized, one should pay 
attention to the printed statistical quantities, and 
examine the input model. Large Bp and small 2 Pexp 
indicate a bad model. Too large or too small B r values 
or an IEr 12 average which deviates too much from 
unity are often related to scaling problems: in this case 
the user may supply reasonable values for B, and B r 
and rerun DIRDIF with a severe sin 0/~, cut-off. The 
following rerun options may be considered: 
* If the model consists of one or more heavy atoms, 
which appear to be shifted by more than 0.1 A, the new 
positions may be used as input. 
* For a light-atom fragment the same option can be 
applied and one may also reject the atoms that return 
low in the peak list, and include some higher peaks. 
* If the input fragment completely returns in the 
DIRDIF Fourier, with atomic shifts less than 0.1 A, we 
suggest adding a number of high peaks to the known 
fragment: this number may be 10, 20% of the total 
number of non-hydrogen atoms, or 50% of the number 
of atoms of the input model, depending on the problem 
at hand. 

The investigations were supported (in part) by the 
Netherlands Foundation for Chemical Research (SON) 
with financial aid from the Netherlands Organization 
for the Advancement of Pure Research (ZWO). 
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Abstract  

The lattice factor of a paracrystalline lattice with 
oblique axes and with general orientation of the 
fluctuation tensor ellipsoid is calculated. Directly 
applicable formulas for the special case of a mono- 
clinic (macro) lattice, which is of interest in connexion 
with the small-angle scattering of oriented semicrys- 
talline polymers, are given. 

I. Introduction 

The ideal paracrystal is a model of a statistical 
distorted crystal lattice or macro lattice (Hosemann & 

0108- 7673/83/060864-04501.50 

Bagchi, 1962). The distortions are described by the 
cell-edge statistics Hk(X) (k - 1, 2, 3) and the mean 
cell-edge vectors are 

ak --f XHk(X) d 3 x. (1) 

For statistics Hk(X) having a center of symmetry, the 
statistical amplitude Fr(b), the Fourier transform, 
,~ '{  Hk(x ) / ,  can be expressed in the form 

Fk(b ) = I Fk(b)[ exp [-2n/b.  ak], (2) 

where, for statistics Hk(X) Gaussian (otherwise as an 
approximation), 

I Fk(b)L = exp I - 2 n  2 b. T(k). b]. (3) 
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The analytical part of the lattice factor is given by 

3 1 - I  Fk(b)l 2 
Z ( b ) =  1-7 

1 1  [ 1 -  IFk(b)l] 2 + 41Fk(b)l sin2 [n(b.ak)] 
k=l 

(4) 
The principal values of the three symmetric fluctuation 
tensors T(k ) ,  with regard to orthogonal coordinate 
systems ~j(k) parallel to the directions of the principal 
axes (Fig. I), are 

A ~ ( k ) = f l ~ , j ( k ) . ( x - - a k ) ] 2 H k ( x ) d 3 x .  (5) 

The principal axes of these tensors in general do not 
coincide with the crystallographic axes a k. 

The distortion of the paracrystal  is defined by the 
nine values Aj j (k )  and the directions ~j(k), but for the 
calculation of the scattering intensity the lattice factor 
and therefore the expression b. T ( k ) . b  in the general 
case of oblique cell-edge vectors a k is needed. Up to 
now only orthorhombic cells were taken into con- 
sideration. In the following the general formula for 
b . T ( k ) . b  is derived. As an example the explicit 
expression for a monoclinic lattice will be given. This 
special case is of interest in connexion with the 
small-angle scattering from fibrillar and lamellar 
superstructures in semicrystalline polymers (Jung- 
nickel, Teichgfiiber & Ruscher, 1973). 

2. Theory  

In real space three coordinate systems are used: 
1. A basic Cartesian system, unit vectors e i. 
2. Principal-axes systems of the fluctuation tensors 

T ( k )  with unit vectors ~l(k) (k = 1, 2, 3) (Fig. 1). 
The calculations can be done with a common origin 

of these coordinate systems, because the shift of the 
tensor ellipsoids to a k is taken into account by (2). 

o 
e 2 (2) 

/ 

o 
e1(2) 

~ 2(1)  

e t ~ l ]  

Fig. 1. Two-dimensional representation of the fluctuation tensor 
ellipsoids. 

The systems /~t(k) are rotated relative to the system 
e I. The rotations are specified by 

~l(k).  ej = cos ~0u(k) = au(k  ). (6) 

The ~l(k) and e t are expressed as 

3 

e,i(k) = ~ a t j ( k  ) ej : =  a i j ( k  ) ej (7) 
j = l  

e t = ajt(k) ~,j(k). (8) 

3. The lattice system with base vectors a I. 
In terms of the Cartesian unit vectors e i, the cell-edge 

vectors a I are given by 

3 

at = Y al ej = al ej. (9) 
j = l  

The elements of the metric tensor Gt] (Price, 1982) are 
defined as 

Gtj : a t. aj : Gjt.  ( 1 O) 

The base vectors of the reciprocal space are a i. The 
following relations are valid: 

l i f i = j  (11) 
al" aJ : ~[  : 0 if  i : /:j  

a i =  G~/aj 

: G i J aJ e l 

= C il e l, (12)  

where 

c u =  G ij a t. (13) 

The reciprocal-space metric tensor G U is the inverse of 
Gil: 

GU= (Gu)-L (14) 

A vector in reciprocal space can be written 

b = h I a i (15)  

with h t as continuous variables. At the nodes of the 
reciprocal lattice they become integers (Miller indices). 
Insertion of (11) in (14) results in 

b = h i ell ei 

= b I e I (16) 

b I = h t e il 

= hi Gij  aJ. (17) 

To calculate b . T ( k ) . b ,  the transformation of T ( k )  
from the principal-axes coordinate system ~t(k) to the 
basic Cartesian system e I must be done as a first step. 
The principal values and the direction of the principal 
axes are given in the form 
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0 00) 
l"(k) = AT 22(k) 

0 d33(k) 

(18) 

and 
~i(k) = otij(k ) ej. (19) 

Using the transformation rules for tensor components 
and bearing in mind the diagonal form of ;r(k), one 
obtains the components Tu(k) expressed in the e i 
coordinate system" 

Tu(k) = [T(k)l U =/1}(k) 

= Ilu(k ) %nj(k) d~m(k) 

= % ( k )  au(k) d21(k). (20) 

This result with (16) and (17) allows the calculations of 
b. T (k ) .  b in a straightforward manner: 

b. T (k ) .  b = b i e 1. Tim(k) e i em. b "i ej 

= b i b J Tim(k  ) e i. e i e m . ej 

= b i bJ Tu(k )  

= b i b j % ( k )  ae(k) d~l(k) 

---- h m C mi h n c nj % ( k )  aij(k) d21(k) 

i hn Gnq a~ an(k) % ( k )  d2l(k) = h m G mp ap 

__hmhnGmpGnq i j t tu(k)au(k)z~21(k) (21) - ap aq 

(summation over all repeated indices, regardless of 
position). 

For a specific paracrystalline lattice the values d ~i(k) 
and %(k), which describe the distortion tensor ellip- 
soids, are fixed. The values of G U and a /are  determined 
by the lattice type. The lattice factor is then obtained by 
inserting (20) into (3) and the resulting I Ft,(b)l into (4). 
For the special case of an orthorhombic lattice and 
fluctuation tensors with principal axes parallel to the 
cell-edge vectors [%,(k) = 6ik] we obtain the well 
known result 

d~i(k) 
b. V(k) .b . . . . .  h~. (22) 

latl 2 

3. A p p l i c a t i o n  to  a m o n o c l i n i c  l a t t i ce  

In some cases the analysis of the small-angle X-ray 
scattering from oriented semicrystalline polymers can 
be carried out by using a monoclinic paracrystalline 
macro lattice as structure model (Jungnickel, 
Teichgr~iber & Ruscher, 1973). The often observed 
fibrillar and lamellar structures are special cases of 
such a superlattice (Fig. 2). In the case of uniaxial 
oriented samples rotational symmetry about the fiber 
axis (a 3 direction) exists and the minimum set of 
fluctuation tensor componence consists of 

d 11(1) = d ,1(2) = d22(1) = zi22(2):= A, 

J 33(1) = J33(2) :=/1a3 

"d33(3) -----/133 

d , , (3)  = d22(3) = 0. (23) 

Furthermore, we set l a 11 sin p = l a21 because of the 
rotational symmetry. 

To characterize the statistical fluctuations of a 
paracrystalline lattice usually the relative fluctuations 

/1, /1, 
- - - g ,  (24) 

la, ls in] /  la21 

/133 
- g33, (25) 

la31 

Aa 
- g3 ( 2 6 )  

la31 

are introduced. 
A fibrillar structure is defined by g3 >> g33 [for 

isolated fibrils (g3 and g,) >> g33] and a lamellar 
structure by g3 "~ 1. 

The edge vectors of the monoclinic lattice cell 
relative to the basic Cartesian coordinate system are 
chosen in the following way: 

where 

al  = a~ e,  + a~ e 3 ( 2 7 )  

a2 = a ] e2 = l a21 e2 ( 2 8 )  

a3 = a ]  e3 = l a31 e3, 

a~=  la~l sin/~= la21 (29) 

a~ = la, I cos/~ (30) 

and ,B = L(a,,  a3). 
The reciprocal-space metric tensor follows from (10) 

and (14): 

[][] 

', /A33(1) = A 3 

" ' "  + ~ 3 , , ( 1 ) A ,  

Fig. 2. Schematic representation of paracrystalline monoclinic 
macro lattices: lamellar (left) and fibrillar (right) structure. 
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G u =  

1 

la112 sin 2 fl 

0 

COS/~ 

lall la31 sinEfl 

la212 

0 

cos fl 

lall la31 sinEfl 

0 

1 

I a312 sin 2 fl 

(31) 

The reciprocal-lattice vectors are calculated with (12) 
and (27)-(31): 

a ~ = G l~ a s + G 12 a 2 + G 13 a 3 

1 
- e 1. ( 3 2 )  

lail sinfl 

In a similar way results for a 2 and a a 

1 
a 2 = - - .  e E (3 3) 

la21 

cot fl 1 
a 3 : - -  - -  e I + - - .  e 3. ( 3 4 )  

l a 3 L a 3 

The vector b is obtained by inserting (32)-(34) into 
(15): 

b = h 1 a ~ + h E a 2 + h 3 a 3 

h i h 3 cot fl ] 
= .e 1 

lall sin fl l a 31 

h 2 h3 
+ ~ .  e E + - - .  e 3. (35) 

faEl la31 

The directions ~l(k) of the principal axes of the 
fluctuation tensors for the case in question must be 
fixed parallel to the unit vectors e i of  the basic 
Cartesian systcm, hence [compare with (8)], 

aij(k) = Ju" (36) 

Equation (21) reduces to 

i • b. T ( k ) .  b = h m h ,  G mp G "q ap a{7 3 u 3 o 3 ~t(k) 

t t zt~t(k). (37) = h m h n G mp G nq ap aq 

As an example, the calculation of b. T(3).  b is worked 
out in the following. 

3 3 2 b. T(3) .  b = h m h n G mp G no ap aq /[33 

: A23 h m h,, G mp a,(G3 ,,2 a] + G n3 a]) 

= A23 h m h, ,(G "~ a~ + G "3 a]) 

× (G ml a~ + G m3 a~) 

- G 11 a]  + h G 13 a ]  + h 3 -- A23[hl l 
× G 31 a~ + h 3 G 33 a]] E 

__ d23 [ h 3 ( 1 - c ° s E f l ) ]  2 

zl]3 
- la3 IE h 2 =g323 h~. (38) 

In the same way, but by a more lengthy calculation, the 
formula for b. T(1) .  b = b. T(2).  b is obtained: 

b. T ( 1 ) . b  = b. T (2 ) . b  /[ ]2/ 
l a  l l c o s f l  h3 + h  2 + g 2 h  2. 

= g 2  h I I a 31 

(39) 

Finally, in the denominator of the lattice factor Z(b)  
the term proportional to s in  E [~z(b.  ak)] occurs and must 
be written as a function of the variables h v The result 
follows immediately from (11) and (15): 

b. a k --- h k. (40) 

The explicit formula for the lattice factor Z(b)  follows 
from (38)-(40) together with (3) and (4). The small- 
angle scattering intensity is obtained by specifying the 
bricks of the lattice (e.g. cylindrical crystallites) and 
working out some averaging processes (Wilke & 
G6ttlicher, 1981). The details of this procedure are 
outside the scope of this paper. 

The author would like to thank Dipl . -Phys.  W. 
Fronk for helpful discussions. 
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